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Cubic Splines and Approximate Solution 
of Singular Integral Equations* 

By Erica Jen and R. P. Srivastav** 

Abstract Of concern here is the numerical solution of singular integral equations of Cauchy 
type; i.e., equations involving principal value integrals. The unknown function is expressed 
as the product of an appropriate weight function and a cubic spline. The problem is reduced 
to a system of linear algebraic equations which is solved for the approximate values of the 
function at the knots. An estimate is provided for the maximum error of the approximate 
solution. Numerical results from the spline method are compared with those obtained using 
other methods. 

1. Introduction. In the numerical solution of singular integral equations of the 
form 

a(s)g(s) + b(s) I l g(t)dt + I_ K(t, s)g(t) dt = f(s), -1 < s < 1, 

IT t - S I 

it is often desirable to avoid the techniques of regularization and to adopt instead a 
direct method for computation. One such method proposed by Erdogan and Gupta 
[2] replaces the unknown function g(t) by 

(1.2) p(t)w(t) 
[where w(t) is the weight function determined by the index theory], and uses a 
Gaussian integration formula for the numerical evaluation of the integral expres- 
sion. Although the method appears to be accurate for equations with well-behaved 
kernels and input functions, the inherent restrictions on the choice of node and 
collocation points could prove to be a handicap in some situations. 

As an alternative to Gauss-Chebyshev methods, Gerasoulis and Srivastav [4] 
proposed that the function +(t) in (1.2) be approximated using piecewise linear 
functions. This procedure permits the analytical evaluation of the integral expres- 
sions, and affords flexibility in the choice of node and collocation points. The 
present paper extends the results of [4] and of Gerasoulis [3] with the development 
of a cubic spline approximation method. In addition to providing higher accuracy, 
the spline method can also be expected to be applicable to the numerical solution 
of singular integro-differential equations. 

Tlhe organization of the paper is as follows: Section 2 describes a procedure for 
the solution of (1.1) with a(s) = 0 and b(s) = 1, Section 3 contains error analysis 
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results, and Section 4 provides comparisons of numerical results obtained from 
various methods. 

2. Reduction to a Linear Algebraic System. Consider the case where a(s) = 0, and 
b(s) = 1 in (1.1), and the solution is known to possess square root singularities at 
? 1. (The method described below is applicable in general, although in some cases 
it may be necessary to evaluate certain integrals numerically.) Set 

(2.1) g(t) = 4(t)( -t2)-1/2 

In most applications, it is possible to exploit the symmetry properties of the 
problem and to work with either odd or even functions. Therefore, assume the 
number of node points to be (2n + 1), and let -1 = to < t1 < ... < t2n = 1. 
Replace the unknown function +(t) by splines S(t) = Sj(t) (j = 1, 2, .. ., 2n) on 
the interval [t ,, tj]. It is computationally convenient to use the form [1] 

Mi(t = 61 (t _ t)3 + M.> (tt ,3 + i M 
j- 6hj)tty ___) h 6M 

hj__) j 6 
( 

(2.2) M hj 
( hj 6 )(tv t),9 j =1, 2,.. .,2n, 

where hj = tj- tj, 4j = %(tj), and Mj = Sj"t)= Sj' (tj). (Although the above 
expressions for Sj(t) involve the moments, or second derivatives, of splines, it is 
possible to use instead their first derivatives.) The function K(t, Sk) is approximated 
by K)(t, Sk) using a cubic interpolation formula in each of the intervals [tj_I, t>j. In 
this way, the original equation is replaced by a discrete analogue 

(2.3) __X t2 Sj(t) dt 2n S1(t)Kj(t, Sk) dt 
(2.3) 2 j + 2 It' A 

j=l -l-t2 (t - Sk) j=1 t- _1t 

where the collocation points are chosen so that tk-l <Sk < tk. All the quantities in 
(2.4) can be evaluated analytically to yield 2n linear equations for the (4n + 2) 
unknowns M0 Ml, . .. , M2n, ,09 419 . 9 , A2n additional (2n - 1) equations 
are furnished by the continuity of the derivatives of splines; namely, 

(2.4) ( hj ) hj hj hj+ I hj 
j= 1,2,...,2n-1. 

Two equations relating the values of the moments at the endpoints are needed. 
These equations are usually chosen to be of the form 
(2.5) aOMO + 1OMI = C0, 2n M2n-I + a2n M2n = C2n 
Finally, a single equation is obtained from the compatibility condition 

(2.6) , Sit) dt = k, k constant. 

j= 1 Nr_I 

Thus a total of (4n + 2) equations in as many variables is obtained. The coefficient 
matrix for the system of equations is of the form 

A[ 
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where A' is the 2n x (4n + 2) submatrix of coefficients obtained from the integral 
equation evaluated at the 2n collocation points; 

A2 is the 1 x (4n + 2) submatrix of coefficients obtained from the compatibility 
condition; 

A3 is the (2n + 1) x (4n + 2) submatrix of coefficients obtained from the 
moments conditions and the continuity relations for splines. 

In order to display the elements of the coefficient matrix in convenient form, 
some operator notation is needed. Define operators Ik, Jk by 

(i,J)(s) =|jtk f(t) dt jj tfk f(t) dt 

-t2 (t - s) V 1 t2 

Note that for polynomial functions f, the expressions for (IkJ)(s) and JJ can be 
evaluated analytically. In particular, 

(Iktp)(s) = 1 k t- dt + stk 
tp-2 dt + 

tkSp-, tk dt 
+5p-lftk dt ^- + sP(Ikl)(s), p = 1, 2, 

tk-} 1t2 

and [5, p. 1471 

2 +{( -1+ 
+ s tn 

m 2 
I - s2 + I)tan 2O 

1-s2 6k-I +s-(1- 1-ss 
\- -I s2 + s tan 2} t- n 2+ s - (I -ta )tan n9k 2 22 

where Ok = arcsin tk. Then the elements of the submatrix A are given for j = 
1, 2,.. ., 2n by 

A11. = I h ( - ti-_t3_ 

+jj 
6 6h(t -t)6K (t, sy)- 

t 
t)K,(t, SJ)] 

+ i 
h(ti-t)3K(t hi)- (ti-) (tSJ] 

+1[ 

6hi 

(6 

- 

t 

-2)K ( ) h 

S 
+ 
_i-l 

h 
(ti-t)3K 

3K 
- (t, i)_ 6 (tt_ K_ t,s , 

= -p h(ti-t)])(&) + JiE(ti-jt)Ki(t,s)] 

( ii- [hI l (t ti-2 )3 ) + ti2-n+2,2) + 3S,j2 

i =2 +2 2n 3... ,42n +2,~ 
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where (IJ)(s) and JkJ are taken to be zero for k = 0, 2n + 1. The elements of A2 
are given by 

A = Ji 6(ti - - -(ti-t) + Ji- (t - -2)_ (th - 

i= 1,2...,2n + 1, 

[ h(ti ] t)1+Ji,[1 (t ti-2)1, i =2n + 2,2n + 3,..., 4n+ 2, 

where again Jj = O for k = O, 2n + 1. 
The elements of A3 are given by 

A ,j = 0, i = 1 A2n+l,i = 182n i = 2n, 

= 1o, i = 2, = a2n, i=2n + 1, 
= 0, otherwise, = 0, otherwise, 

and forj =2, 3,. .., 2n by 

Aj1= 1, i =j-1, 

2 hj , )h 

hj. 
=hj'y i + 1 
hjh-_j 

_6 

hjhj -i = 2n +j, 

_ 6 _ 6 i=2n+j+ 1, 

6- i=2n+j+2, 

= 0, otherwise. 

From the above, it can be seen that the coefficient matrix A has the structure 

full 

0 0 

0 0 

Note that, when solving the system by Gaussian elimination using only partial 
pivoting, it may be advisable to rearrange the matrix so that the ?>j's are computed 
first, thus reducing the effect of round-off error propagation. 

3. Error Analysis. Define the functions O*, p' as follows: 
(i) O* is the Type II cubic spline on the true values 4(ti), i = 0, 1,... , 2n, with 

*" (to) = (t0), *" (t2n) = 0"(t2n); 
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(ii) f is the spline on the computed values for 4(t,), i = 0, 1, . .. , 2n. Let 

X = [0e(t0), 0(t1) * * * I 0 e20), e 0(t0), ( . *(t2n)( , 

X * 
=[4P* (t0)' 4P*(t1)I .. I 4*"+(t2n), 0*(t0) 4P(tl)l .. I 4* (t2n) II 

e8 
[08"0(t), 08"(tl), 0 8"(t2n), 0 t0), 0 t1), Oe ++(t2n)], 

and 

f [f(S1), f(s2), . . I f(s2,) k, CO, O, . .. , O, C2n]. 

It will be assumed below that the splines used are the natural splines, so CO = C2n 
= 0. The system of equations which is being solved can therefore be represented as 

(3.1) Axe = f 

The vector x of true values satisfies 

(3.2) Ax= 

where f = f + 0, and 0 is the vector of errors in the numerical integration induced 
by the use of splines. Hence 

(3.3) 1x1-e - xll < IA 'I- 11 011. 
Note that A depends on the spline knots and the collocation points. The above 
inequality can be used to obtain an error estimate for the spline method. The 
components of 0 are given by 

l rl (+*-+)dt il (K+0*- K+) dt 

(3.4)j)V 
t 2 

j= 1, 2,...,I2n, 

where Ke is the piecewise cubic approximant to K, and 

(* )dt j = 2n + 1, 
-t2 

(3.5) = 4V'(t0), j = 2n + 2, 

= "(t2n), j = 4n + 2, 

= 0, otherwise. 

Let 

(3.6) e(t) = - 

Then the second term in (3.4) is easily shown to be bounded by 

T { max 1*1 maxlK, - K] + maxicl *maxlK]}, 
-1<'t <1 

which, using the results of [6], is 0(h4) for h = maxj hj. Furthermore, again using 
the results of [6], the first term in (3.4) can be shown to be 0(h7/2-6), a > 0. Hence 
the maximum error of the spline method is given by (3.3) with 11011 of order h7/2-6. 

In practice, it has been found that for problems with known solutions, the spline 
method produces results considerably more accurate than predicted by (3.3), thus 
indicating that the error bounds above could probably be significantly improved. 
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4. Numerical Results. The spline method has been used to solve a number of 
singular integral equations, including the following: 

ExanWle 1. 

(4.1)!f g( )d f- sin(t - s)g(t) dt = J1(l)cos s + 1, -9 <s < 

where J1 is the Bessel function of the first kind of order 1. The solution g(t) is 
required to satisfy the compatibility condition 

f g(t) dt = 0. 

Moreover, g(t) is assumed to possess square-root singularities at ? 1, and hence to 
be expressible in the form 

(4.2) g(t) = 4(t)(1 _ t2)-1/2. 

Then it can be seen that the true solution is given by (4.2) with +(t) = t. The table 
below displays the maximum error c in the values for +(t) computed using the 
spline method. 

n* E 

2 0.000041 
3 0.000003 
4 0.000001 

For n = 7, the computed solution was accurate to the limits of 

single-precision computation (8 digits). 

*n is the number of nodes taken in the interval [0, 1). 

Exanple 2. 

1 J1 g(t) 1 lt(t2 _ S2) if g(t dt+1f - (t 
g2(t) dt -l <s < 1, 

X -1 ts XT - W( + s2)2 

subject to the compatibility condition 

f1g(t) dt = 0. 

The above equation arises in the problem of a cruciform crack in an infinite 
isotropic elastic medium under constant load a along its four branches. As before, 
the function g(t) is assumed to be of the form 

g(t) = 0(t)( -t2)-1/2 

The table below provides a comparison of results obtained from the Erdogan- 
Gupta method [2] (Column I), its Lobatto-Chebyshev variant [8] (Column II), and 
the spline method (Column III). 0.8636 is the value calculated by Rooke and 
Sneddon [7] and generally accepted for p(l). 
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n Erdogan-Gupta Lobatto-Chebyshev Spline 
3 0.8364 0.8597 0.8846 
4 0.8388 0.8639 0.8641 
5 0.8629 0.8645 7.8638 
6 0.8638 0.8644 0.8637 
7 0.8653 0.8642 0.8636 
8 0.8628 0.8641 0.8636 
9 0.8650 0.8640 0.8636 
10 0.8628 0.8638 0.8636 
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